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If w is a k-form, redefine the (k+l)-form dw by
L 2
(dw) (uvvoa . 'vovk)- = 2 ('1) (D(.D)(U.,Vz ’Vo’vls- o 9(} 200 ,vk) .
£=0

(Here the A over v, means that v, is omitted.) We claim this dw
is the same as the dw defined previously. This is checked by showing

that this dw is linear and alternating in the Vreees Vs and has the

k
same values on the basis elements of VXV X,,, XV as the old duw.
The linearity is clear, given our comments regarding the operator D;
dw is alternating since computation shows that it vanishes when any two
successive arguménts are equal. Suppose now w is a one-form ;

w = z widqi , where {qi} are coordinates on M and {ei} are the

corresponding basis elements of V & Tu(M). Then wi(u) = w(u, ei). By

our old definition

kil | P j i
dw = Z ( = = ; )dg Adq = 2 dw(u, e ej)dq A dg
i<j 9q aq 1<)

To prove that the two definitions coincide for one-forms it will thus
suffice to show that dw(u, ei, ej) is the same as in the new definition.
But in the new definition

dw(u, e ej) = Dw(u, e ej) - Du(u, ej, ei),

and ,
Df(u, ei) = 9/ 9q, .
Hence
dw (u, e.) dw(u,e)) dw. dw .
dw(u, e.,e,) = L. L= - =
TN i j i g *
9q oq 9q 9q
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which is what we were trying to prove. Similar techniques show that
the two definitions are the same for general k-forms.

We are now ready to define the map s which makes a (p-1)-
form out of every p-form. If w is a k-form, let

1
k-1
(sw)(u;vl,.. "vk-l) =J;) t w(tu;u,vl, ,vk_l)dt.

Here we consider the open set U as part of the vector space V = Rn,
which has also been identified with Tp(U). Thus onthe right-hand side
of the equation, the second argument, ue U, is viewed as a vector
of V. But since: U is an open ball, tu, the first argument;, isin U
for all t# 1. It is now easy to check that sw is a (k;-l)-form . linear,
alternating, and smooth as a function of u.

We now take a k-form w and show, at last, that ds(w) + sd(w) = w.
First,

1
k-1
D(sw)(u,v,vl, - ’Vk-l) =J‘ D[t w(tu,v,u:vl, . ’Vk-l)]dt

0
L k
(since all functions involved = J- t Dw(tu, v, u, MEERE ’vk-l) dt
are smooth and bounded) 0 :
1
k-1
+f t w(tu,v,vl,...,vk_l)dt,

0
The latter term appears as it does since w is linear in the third variable,

and it was proved that if f is linear, Df(u,v) = £f(v). Now
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D(Sw)(U,Vi,Vl.... ,QI!,... ,vk)

1]
[\/Jrr
~~
[]
—
S
oS
[]
L

d(sw)(u,vl, cen ,vk)

M=

1
(-1)1-1[f tka(tu,v , U,V  eee sV see. vy )dt
0 1 i k

A k-1
= AN
+J- t w(tu,v ,vl,...\'rz,...,vk)dt] ,

0
and
: k
s(dm)(u,vl,.,.. ,vk) = fo t dw(tu,u,vl,... ,vk) dt
1 k
1 k A
=J‘ E(_l)t Dw(tu,v!’u’vl’..-’vl’...’vk)dt

0 £=1

1 k
+ t Da(tu, u, vy ye .., v, )dt.
0 1 k

When we add d(sw) and s(dw), the first terms of each expression cancel;

also,

k 1
f =1 k-1 IS
2(-1) J‘ t w(tu, v ’Vl"”’vl""’vk)dt

)4 1
= 2(-1)2_1f (-1)1“1 tk_-lw(tu,vl,...,vk) dt since w is alternating
0

1
k-1
= kf t w(tu,vl,...,vk)dt.

Hence

k-1

o(tu, v, ;..o , v, )]dt

1
.,V):j [tka(tu,u,v yee. v, ) Tkt
k 0 1 k

(sdw+ds w)(u, v

1 k

17

1
(e .k
= J‘o e [t w(tu,vl,. 3 ,vk)] dt
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(since Duw(tu,u,.:.) is.just the directional derivative in direction u

of w(tu, V) sues ));

s e B s :
=1 w(u,Vl,... ,Vk)-o = w(u,Vl,...,Vk). Q.E.D,

§24. The Lie Derivative

LetA X Vbe a vector field on U. There is an operation on the

ring .9" of smooth functions on U ~defined by
- Le(f) = Df(u,X(u)) = (X)@. . . L ozgnal

This operaton LX is a derivation, since each X,ué .Tu(U) isa - ...
derivatipn.:.. L. is called the: Lie. derivative. We-have shown that a
vector field is detetrmined by the way it acts on the functions of ; s
this mea~s that knowing the operator LX determines X, /& ..!

Now it is easy to check that if: 8; ;nd.:qf are derivations of }
is

then so is 8y - y6. Call th;_s new derlvatmn [0, y]. “Then. [LX, LY]

a derivation, so to it there is associated a unlque vector fleld. ~This; tot

5

vectom, ,ﬁgeld ;.s ealled the L1e bracket of- X and Y and is- wrltten [X ¥

In coordinates {q.._,;,-_i.»,; ol q} let X = Z x ;Xem 2 oy: -r'?‘—*,t
| T ek A5 = .q [ . WUEAE aq |
xl,,Yl . } . T}ién;"'L-""(f-):,‘-i j"'}‘{l _a_f___‘ forwf ol 3 Ai;‘_f "ISQT_ bs
X - S T
9q" -
j _L j Bx 9 k

Z( E X =¥ T )—T o - - Inefact, it-is easy to check.

Bq e

q Bq

witﬁcgﬁt u'sin'g" "c';_o:b rdinates that"f ‘, - 13

fies the relations

[X,X]=0 , [X,[Y,z]]+ [z [Xr Y]] +[Y [Z,X]j ='oA A’(J’a’cobi identity).
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We will now show that the Lie bracket provides a natural way

of extending the Lie-derivative operation to apply to all tensor fields.
1
There is an identity tensor 6§ e jl (V); & corresponds to the identity

E
map on V under the series of identifications
1 * * * % %
.71 (V)= V®V = Hom(V @V,R ) = Hom(V ,Hom(V,R )) & Hom(V ,V ).

. ' . _ i
In coordinates {ej } we find 6= >, ei®e ’

Theorem. Given any vector field X on U, there is a unique
. o 8
linear map L_, where L_: f(U) — J (U) for all non-negative
X X" v s
integers r and s, with the properties -
fo = <df,X> for any smooth function f on U,

2. LXY = [X,Y] for any vector field Y,

3 LX6=0,

4, LX is a derivation; that is,
' 1y = 1 1
Lx(-r®-r ) (LXT)®T + T®(Lx'r ),
for any tensor fields T and T'.

Proof. We put coordinates ql, TIT qn on U and show that any

operator LX satisfying the given conditions must satisfy

k .
(5) Lx(qu) = E Bxi dql for all k.
o T ag
Write X = Z x* _81_ ; then we have shown that
' 8q |
: i : i ;
- j oy J _oX 9 : _ i 9
L Y E(X———j - 3 )—i,1fY—2Y =
i, 9q 9q 9q dq
. ) _ X' @
In particular, LX( = ) = - z = :
i 9q oq

oq
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Now 6= S 2= ®da*. So
k dq :

o 3 k. _0 13
0= L6 = >, L (—)®dq * — ® Lydq
k 9q ; aq

. 4 4
oX 2 k 9 k
=-E (— ®dq)+ E———@L dg .
k ? <‘3qk 8q’ k aqK o

If we write Lx(qu) = 2 c:( dqi , it is clear that we are forced to

take cki = 8Xk/aqi .  But it is clear from (4) that once LX is defined
on functions, vector fields, and co-vector fields, it extends uniquely to
all tensor fields. So we merely define LX by (1), (2), and (5), and check
that (3) and (4) are satisfied. Notice that this is really an invariant proof,
since we have shown that any extension of the Lie derivative satisfying
1-4 must, when expressed in coordinates, agree with the operator we've.
defined.

Corollary 1. LX(df) = d(LXf).

For example,

k k
i 0 oX i
AL, = A xF 2 )- ax= S Eag - L (ad).
X Bql ‘-—’i Bql X

lV denotes the

Corollary 2. If V is an open subset of U, and

restriction to V, then

(Lyy = L)yl

_ v
Corollary 3. LX maps Qk(U) into Qk(U).
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Mc Think of an exterior form as an alternating tensor;
recall that a tensor T is alternating if and only if ATt = 7. Hence,
we must show that if T is alternating, A(LX-r) = LXT. In fact,
A(LXT) = LX(AT), since A is a sum of permutation operators, and it

is easy to see that L, commutes with permutations.

X
Corollary 4, LX(w/\n) = Lgwan twALym, 1f wand n are

exterior forms.

Proof, LX (waAm) LX(A(w® n) = ALX(w®n)

A(wa RN + w ®LXn)

LXwA n + wAL

x1 -

Corollary 5. d(LXw) = LX(dw) if w is a k-form.

Proof. Write w= > fag & da’ 4 ... A qu . Then

do= > dafAdq' A...Adq", while

k
— 1 k 1 i k
wa— E,fodq,\... dq +E.E1qu/\....l\Lqu A...Adqg .
1=

Computation now proves the equality, with the aid of the preceding

corollaries,

§25 Transportation along Trajectories

This purely formal proof of t;le properties of the Lie derivative
does not really shed much light on the geometrical meaning of this
operator. Actually, as we are about to show, the Lie.derivative can be
interpreted in a way very much like the ordinary definition of a derivative:

the limit of a difference quotient,
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'Recall that every smooth vector field X on a local manifold M
has integral curves c passing through every point of M. An integral
curve is one whose tangent at every point p is the same as the tangent

vector which is the value of the vector field X at p; symbolically, if

p = clty),

de/dt(t,) = X , or dc/dt = Xoc.

o = Xe(ty)
The standard existence and uniqueness theorem for ordinary differential
equations, when applied to this equation expressed in coordinates,
guarantees the existence of at least one integral curve through each pqint
of M (although each curve may be defined only on a small interval on the
real line); furthermore, two integral curves passing through the same
point must agree wherever they are both defineci.
Now change the point of view slightly, and considerthe motion of
M which takes each point p to thepoint t units along the integral
curve passingthrough p. For a fixed t for which all the integral curves
are defined, this would describe a map from M to M. In these terms,
the existence and uniqueness theorem may be stated:
If X is a smooth vector field on a local manifold M, there is a
unique trajectory of X through each point, and for each point p
of M there is a neighborhood U of p and an interval ICR i
together with a function F:IX U —= M, such that F(0,u) = u (initial
conciitions) and for fixed u, the map taking t to F(t,u) is a trajectory

of X,
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Write Ft for the map of M to M defined by Ft(u) = F(t, u).
' n
In the case where M and U happen to be all of R andI-= R

(u) =F,_, (u) forall tandt'. Indeed.

we must have FtF .

tl
tWFt(Ft'(u)) is a trajectory starting at Ft'(u), but so is

tMFtﬁ'(u); by uniqueness, they must be equal. In particular,

Hy
)
H.f\
£
n
&

for eachue M,
F (F(a)) = u '

so each Ft has a smooth inverse map. In this case we say that Ft is

a diffgomorphism. Then tM)Ft is a2 map of the additive group of real
numbers into the group of diffeomorphisms of fR_n, In general, of
course, the map F will be defined only on subsets I and U of R and
TRn 3 it is not hard to see, howevef, that restricting further to an interval
I'e I and an ovpen set U'e U gives us a map F'= FII‘X U for which
_Ft' has the srr;ooth inverse F_’t for each te I'. (Cf. Abraham pp.
39-40). Such a system F' will be called a flow box of X.

Suppose now that B is a functor from vector spaces to vector
spaces: for example, B(V) = V*, or B(V)=VXYV, or B(V)=VA...AV.
Associated to such a B is a bundfe B(M) over M, whose fiber over
p is B(TPM). Thus if B(V) =V, B(M) = T.M; if B(V)= VAV, B(M)

is the bundle of all 2-forms on M; and so on. Furthermore, if

f:M—> N, is a smooth map, then there is a map
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B(f): B(M) —> B(N) if B is covariant;

B(f): B(N) —> B(M) if B is contravariant.
For instance, if B(V) = V*, B(f) = £ T (N) — T (M).

To define the Lie derivative of a general field T with respect to
X we wish to do the following: given a point p, move along the fra-
jectory of X through p for a time t; at this point, find the value of T,
and now move T back along the trajectory to get a tensor at p. This
pulled-back tensor will not generally be the ‘same as the value of the

tensor field at p; but we can form the difference quotient.

Fiber over Ft(a)

Fiber
over a ‘ :
‘ B(F,”) B(M)
‘_i
B(M) \\
T/’ T | rr ‘l‘ T
v
/
F M
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Definition. If X is a smooth vector field onMand T is a co- or

contra-variant field on M, define the operator KX by
-1
d/at(B(F )oToF)| if T is covariant
t t"'t=0
KX(T) = :
d/dt(B(Ft)OTOFt) |t=0 if T is contravariant,

where F is a flow box for X,
Notice that this definition does not depend on the choice of F, by
the uniqueness of flow boxes.,

Theorem. KX is the same as the Lie deriyative LX .

Proof. By the Theorem of § 24 characterizing LX’ it will suffice to
show that KX is a derivation, KX6 = 0, and that KX agrees with LX on
functions and vector fields. In fact, examination of the proof of that
theorem makes it clear that we can show KX = LX on covector fields in-
stead of on vector fields, and the result will still follow.

First, KXG = 0 since & may be expressed as an idqntity matrix in-
variant under Ft and B(Ft); its derivative is zero. Showing that KX
is a derivation will involve working with functors B; B'; and B", and a
covariant, bilinear, natural transformation O:B X B! —> B", Then if
T: M—> B(M), T':M —> B'(M), we can define T X T', mapping M
into the pullback bundle B(M) XM B'(M); TAT' isthe composite map

3 m]
T X T : ,
M — B(M) X, , B'(M) L

> 'B"(M)

To show that KX(T aT')= KXT oT'+ Tao KXT' , we compute



B"(Ft-l)oTnT'OFt [B(Ft'l)Tu B'(Ft.-l)T']oFt

[}

[B(Ft'l)'r]Ft o [B'(Ft-l)T’]Ft .

Now in general, suppose oft),o’(t) are maps of an interval I to V
and V', respectively; o(t)3 ¢'(t) e VA V' = V", Since O is bilinear,

we can write

el (slt)ao!(t)) = Ec e (a(t))ey (o"(£))

i ,
for some constants cjk . where {ei} are cﬁoordinates on V, and so on.
Now the ordinary Leibnitz rule for the derivative of a product of real-
valued functions applies, and it follows that KX is a derivation.

If £ is a real-va.ued function on M, the fiber over every point

is R , and in this case B(Ft-l) is always the identity map. Thus
a}?l

Kel®) = S ((Ffa) = -5 —— = Zxt T = Lyt
i 9dq q

- I i i 9
where qFt.=Ft . and X = in ;1— :

agrees with L., on covector fields, we can

Finally, to show that K <

X
use the properties already proved to find KX( 2 fidqi), once we know
Kx(dg) for any function g: hence it will be enough to prove KX(dg) =
L‘X(dg).‘ Now in this case B(V) = Y*, so B(Ft) = Ft*’ In general,
however, we defined the pullback of a form w by a map ¢ as the form

%k
¢ w given by

(P*a)(a) = ¢"(o ) = (Towen)a) .
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Thus

K, (dg) = = (B(F) edgeF,) = & (F, o dgeF,)

(£ (dg)) = o (algeE))

a((goF,) 5 dllyg) = Lylde)

(by\pfevious part of the theorem.

This completes the proof of the theorem.

Note. ' In the above proof we considered a k-form as a cross-section of
a suitable (exterior) bundle. This means in particular that we should
consider a 0-form (= a smooth function) as a cross-section; we will show
that it is a cross-section of the trivial bundle. Explictly. take that
functor B which sends each vector space V to the one-dimensional

s pace R and each linear transformation f:V —= V' to 1:R — R .

(Thus B is a "constant" functor). If B is used to construct a fiber
bundle over .M it gives the bundle MX R (mx . a cross-sectiion'

M m

here is clearly just a smooth function M —R

§26. Canonical Transformations described by generating functions

A function F((:j‘l Ty qn:. Pl,., 5 @ Pn) of 2n variables will
yield a canonical transformation. We first describe informally how
this arises. Suppose that the quantities q1 PR qn, Pl’ s g Pn are

coordinates on some local manifold U and that the matrix
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[| 8%F
| 98¢ aP,
J

- i
is everywhere non-singular, Define 2n more quantities p and Q
{

(= smooth functions) on U by the cquations

i_ i . i _ OF
q-q . 1—1,.ee,n Q = aPi

oF : :
pi:Ey]-:l:-a-sn Pi= Pi ’ 1=13“"ln‘

The assumption on the matrix above, plus the standard implicit fﬁnctién
theorem, tells us that the P, qi or the Pi’ Qi may also serve as
coordinates on U. In particular, there is then a transformation from

the piqi to the PiQi coordinates. This is the transformation
"generated" by the given function F. To show that it is indeed a canonical

transformation we calculate the differential

d(z PiQ ~F) = ZdPiQ * ZPidQ -z-é?— dq - api dP" .

1
Inserting the values chosen for P, and Q above gives

i » i i
- F = P - d -
AP -F) = S paet - S e
Taking the differential once more gives
i 1
A = dq .
> dP.AdQ" = > dp.ndq
so the indicated transformation is indeed canonical.
Similar transformations may be generated from functions G of
othe: sets of variables, say G(Ql, €5 By Qn, Pysees pn), The formalism

may be found in Goldstein; we turn now to a more conceptual explanation.
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Theorem. Let M be a 2n-dimensional local manifold with

=) 2
coordinates { '}, M —F—> R a smooth function and det 0
q aP:_laq1
82F i
everywhere. Then w= - ——————dq' AdP_  is a closed 2-form
i3 Bqlan J

with wA...Aw # 0. Thus M is symplectic.

Proof, We must first show that dw= 0. But
3 ; 3

) ; ;
do=- > T 1 Fi dq"A dq’ AdP, - ai F dB N dq'ndP, = 0
9q9q'9P, ——— 9q 9P 0P, J
J  alternating k

Next we must show the n-fold exterior product WA...- A® # 0. Write
i
w = a..dg andP,
> 2,49 naP,
In the n-fold product many terms (iterated factors ) drop out; there re-

main the following terms, for all permutations o and T of the sym-

metric group on n letters:
> :|TTa,
: 1]

so one gets the determinant n: times and

dq'A ... Adg A dPJ,A-‘..,AdPn

WA ... Nw = n! det”aij” 70.
-Thus (M, w) is a symplectic manifold, as required.

Now the definitions

5 = oF

! Bql i=1,inass B
i i

qQ = q

give 2n coordinates; since w = E dpil\dq1 in these coordinates, they



s

are cancuaical conrdinates. Indeed,

Z 2 ;

i 9F i 9°F i 9°F i
2 dgrda = d—)adg = 3L —— adg £ X —— Adpladg
d8q «_9978q iy 8q Bpj
0

This is exactly the 2-form w defined above.

Similarly, the definitions

P =P

i i
A = oF | i=l,e00;n
i aPi :

give 2n coordinates which are canonical coordinates, since the 2-form

may be written

) i
©= > dP,ndQ".

Note the advantage of using differential forms. Specifying any
closed non-degenerate 2-form makes U symplectic -- no matter what

the coordinates. Here there are three possible coordinate systems

1 n i
Qseeesd :ProcersP w=2dpiAdq
| 2
1 n ' g F i
G senesd 4P gs0usP W= = B ————dq WdE:
ngl.P_ﬁQn,Pi)Clo:\P wz-zdPiAdQl °
n .

The first and third systems are sym'f)lectic, but the transformation is
generated by going through the intermediate non-symplectic coordinate
system.

Such transformations may now be used to simplify a given

Hamiltonian function H (a smooth function on U, given in terms of the
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coordinates ql, pi). If we relabel the generating function F as W, then

pi = BW/Bql, and

1 n 1 n oW ow
H(q,...,q,plv...,pn) = H(q,...,q_.-—ln..,—n).
9q 9q

We propose to choose new canonical coordinates Ql, Pi so that H will
become simply'Pl, the first P-coordinate. Writing @ for Pl’ and

considering @, as a constant (a parameter) this yields the equation

1 n aow oW :
H(q po-ogq ._lpuo.: n ) = al °
9q 9q

This is a first order partial differential equation for the function W, It

is called the Hamilton-Jacobi partial differential equation. If we find a

solution W depending on n-1 additional "constants of integration"

1 n
W=W(q3"“5q;017"’50n)

satisfying the condition

2
)
da“—fﬂ— 70 ,i,j=2,...,n
8q'9 a,
J
we can then prove that
2
det || —W ,'% 0, i,j=1,...,n.
i
oq Baj

Then W, with the a's replaced by . P's, may serve as the generating
function of a canonical transformation. In the new canonical coordinates

the Hamiltonian function is just P1 . Therefore Hamilton's equations

become 6 = 5

i i1’

ﬁ.:_o:' :i.:l’aao;n
1
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and may be immediately integrated as

Qi=t6i1+ ﬁi ; Pi=ai, | 1=, snipts

From the transformation equations

p. = _aVI_V_ , QJ = 3w t6_1+ ﬁ
1 aq %a =)

one may then solve for the original coordinates P, and q, as functions

of t.

§27. The Top
As an example, we consider the rigid motion of a heavy top, using

the "Euler angles" 8,0, and # as the parametrization of the rotation

£he
group in 3-space, with the axis of,top along the z-axis (see figure). Let

wx, wy, and w, be the angular velocities about the x, vy, and z axes. The
kinetic energy of the top is then

1 2 2 2
T = > [Ilwx + Izooy + I3wz 1,

where Il’ IZ' I3 are the diagonal terms of the moment of inertia tensor.

(The axes are chosen so that the non-diagonal elements are zero. )

Choose the top symmetric with respect to the x- and y-axes so I1 = IZ.

One may calculate from the definition of the Euler angles that

w \L‘+?¢cose,

A

w %sinesindg-i-écosq; .

y

mx=fdsin9cos P -ésinq,t .
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Therefore
T = %[Il(é2 + §% sin®0) + L+ § eos8)] .

: ‘ g . T
Since the momentum coordinates p, are defined as P, = —5 ., we have

04
p, =18,
1N
Py = 13(¢+¢cos 9),

o 2 2 s
p3—13(¢ cos e)+(11 s1n9+I3 cos @)@

from which we obtain

p° ) p,cosq’ - p
S s — e § ke (B 2 )] + Mgt cos g
2! 71 I I 1
i 3 1 sin q

where £ is the distance along z from the origin to the center of mass

(see figure),

Substituting P, = T gives the Hamilton-Jacobi partial

8q
2
differential equation for W. Since H also is independent of q and q3,

. @, and @, constants are solutions of

we know that P, = & > 3

and P, =@

2 3

Hamilton's equations. Hence we "separate the variables" in W, writing
1 2 3
W=W (q)+ W, (q)+W.(q),

where we may take

2
Wz(q ) = @,q, * Cfnstant, :
3 3
W3(q ) = @, q + constant,
since BW =P % e for 1= 2,3.
o9ql
The remaining equation for dV{ is

dq
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2
a @ cosq -«
w .2 Z
d—-—) =I[2a-2Mg1cosq1- £ -L(2 3)]
1 1 1 I I ] 1
dq 3 1 sin q
Set u = cos q1 s the equation becomes
2 ot
2
(l-u)(dw)-l[(Za- 2 _oMglu)(l - ud) - == (e, u - a,)”]
1 1 I . I 2 3
dq 3 1
a a 2
= Fla,a) = (1 - oAb - ku) - (GFuw-7=)
1 Il Il

where h and k are defined accordingly so

1-u
ow ° 3
But we want Q so Q1= 2= 1 and Q, =t + B, so
: 8&1 apl 1
dq(l-u
1 9
6z 20, - 1 s

da 1/
: 1-u2.\ru,a) Flu, o

80
=f N - , where u= cos q1 = cos 6.
VEF(u, al)
Since F is a cubic polynomial in u, this is an elliptic integral; the
detailed explicit solution is given in Klein and Sommerfeld (4-volumes)
on the gyroscope.
We consider now the qualita;ive properties of the solution. Since
F(u) = ku3 + ..., with k>0, we have F(o) =+ 0, F(-_oo) = -0, and
F(u) = 0 has three roots. The roots uy and u, between -1 and +1 (see

graphs) are the only ones of physical interest since - 1£u<l isthe
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only part which is physically possible. Now

d
d:i: = 2 implies (-dlz-)z F(u)
NF(a)
so the zeroes of F(u) are where 3:1 is zero.

If we take the positive square root of F, we get a solution for u

increasing from u, to u, as time goes from 0 to. say,A . This may

be extended by reflection (negative root of F) to give a solution decreas-

ing from u, to u,- Continuing, as in the figure, we have a solution for

all t

of the general form indicated, so that u(t) is per}odic with period 2A.
This solution may be pictured in terms of the angles (6,¢) which
give the point where the axis of the top pierces the unit sphere. For

example, P, = a, and Py = o, allows us to solve the equations above

3
for :p as

oz3-a2cose ) a3-azu

. 2 2
I1 sin” @ 11(1 -u")

'

Here ¢ is the speed of precession of the axis of the top around the vertical,

while @ is the speed of rotation. For further qualitative discussion, see

Goldstein, Classical Mechanics, pp. 164-175 or W.F. Osgood, Mechanics.
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Euler's angles and the
Heavy symmetric top
with one point fixed

center of mass
U = Mgt cos®

Location of turning angles

One possible Locus of the figure axis on
the unit sphere
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§28. Darboux's Theorem.

‘The typical example of a symplectic manifold is a cotangent
bundle of configuration space. In such a bundle we have the usual position
and momentum coordinates qi and P.» and the basic 2-form of the mani-
fold is given in terms of these coordinates as

w = z dpi/\ dqi .
The definition of a symplectic manifold (M, w) was apparently’ much
more general: Any 2n-dimensional manifold-with a 2-form w which is closed
(dw = 0) and non-degenerate (wA...A w, to n factors, nowhere 0).

The added generality is illusory: Darboux's theorem asserts that
at each point a of such a manifold there is always an open set U con-
taining a _ and coordinates qi and P, -- good in this neighborhood U '__-

for Which w has the- special form above.

One proof of this theorem is done by systematically exploiting the
correspondence between vector fields and for;'ns which is given by the
basic form w. Tﬁis is the proof given in Abraham, pp.92-94. Another
proof (see Sternberg p.137) depends on a more general theorem of
Frobenius on the integration of differential systems. We refer to these

texts for details,
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Corrections teo Geémetrical'Mechanics, Part I, Saunders Mae Lane
(1-4 means 4 iines from foot of the page)

p. 10, line 2 (display) gij after 7 should be g
p. 10, line 7, 1-5, 1-1: All V' should be l.e. v'.
pP. 11, line 6 (display): V, —> F

p. 11, line 10 (display): (see below)
Do i8: “Proof of theorem inecomplete because addition of tangent

vectors is not explicitly defined. Definitien should be by map
p:TaUT > (T® U)® given in line 1 via

p(7ge + 7,8') = proe + pt e’ (addition in T2 U)®

This requires proef that p is ente. Use loeal coordinates q,l,.,”,qn

OTU—QRnbyMe-(—w“” )
aqt

*

‘ B - (3L : .a..f.,.._ 3
9:T% — (R™)® bytpdf .(aql""’ =

ep’ i — (r‘u)*

% gt

and thn; chow by caleulatien that'fho diagran

TU - A > (7o)

]

Ra
with ©, ¢% both isomorphisms, commute (¢%0 = p)
p. 20, 1-1,-2 £ should be k:V —57R

p. 11, 1ine 10 (display): d, should be 31 (lst equetion)




L .Al<

Ik
L

.

S

e

N ~

LT -

R )V Jigalgeld! ¢

_ (wf!sd 898 .\tnlqakb oL
, thSa eausded e3r/gmuan'! mescens Yo
Ci noLis cokvinlted hsc;isn vidloliqgzse don &

slv I enll ol asvig %y 51 <«

T 5wt nols ' (1 }
! noilstbbs) 2,79 ¢ o vq = ! 3, * 2 rig

calan by ¢ fsecl 93U .o0300 al q Jadt Yooaq eetlures

o

6 ~hc.[£)’5£?‘;‘daxf'——UTfo

.f. pé 3
72 o 1o v TR — Ui
- ‘.5

") e TR e

naspsld odd isds nolialusise Yd wuds ».u

Ut -

N

\ux
(q = 6%) siummos ,ameldgroccsl dded By

M &~ v:d od Bluods § s-.y_-_».

£

-

wlssupe tal) Yp5 od Bluods ,6 :{yalqerd) Of eatl f

-

e

-




